

TALLER DE LEYES LÓGICAS – CICLO CERO – SEMANA 5

Procedimientos:

Aplica el análisis y la síntesis y el enfoque sistémico entre otros, como estrategias generales de adquisición del conocimiento

Planifica y organiza eficazmente sus actividades y el tiempo dedicado a ellas.

1	т т	C/	1
		fórm	กบได

$$\{ [\ (\text{-p} \lor q) \land (r \lor p)] \lor [(p \land q) \lor (\text{-r} \lor \text{-} q)] \}, \\ \text{equivale a:}$$

- a) $p \lor q \lor -r$
- b) $-p \vee q$
- c) $(q \lor r) \land -r$
- d) $(p \lor q) \lor -q$
- e) $q \wedge p$

2. La fórmula:

$$\{(-q \ v \ r) \ v \ [(p \rightarrow q) \land (\sim r \rightarrow \sim q)]\}$$
, equivale a:

- b) r **←** q
- c) $r \rightarrow -p$

- d) $q \rightarrow r$
- e) $-p \vee q$

3. La fórmula:

 $[(-p\lor-q)\land p]\lor-q$, equivale a:

- a) p
- b) q
- c)- q

- d) p
- e) N.A.

4. La fórmula:

-(-p
$$\vee$$
 p) \vee [(q \wedge r) \vee r], equivale a:

- a) $p \wedge r$
- b) $q \vee r$
- c) $p \wedge q$

- $d)p \wedge -q$
- e) r

5. La fórmula:

$$[(p \land q) \lor (-p \land q)] \land (r \land q)$$

es equivalente a:

- a) $p \wedge r$ d)q
- b) $q \wedge r$ e) r
- c) p

6. La fórmula:

$$\{[(p \land q \land -r \land -q) \lor -r] \land (p \land q)\} \lor p$$

Equivale a:

- a) $p \wedge q \wedge r$
- b) $p \wedge q$
- c) p

- d) q
- e) N.A.

7. La fórmula:

$$(p \land -r) \land [(q \lor r) \rightarrow -r]$$

Equivale a:

- a) $q \lor (p \rightarrow -p)$
- b) $p \wedge (q \vee -q)$
- c) $(-p \lor -p)$
- $d) (p \rightarrow r)$

e) q

8. La fórmula:

$$[(q \wedge r \wedge s) \vee \text{-} r] \wedge (q \wedge s)$$

Equivale a:

- a) $(s \wedge q)$
- b) $(q \wedge r) \vee (q \wedge s)$
- c) q
- d) r
- e) s

9. Determine el esquema más simple de la proposición

$$\Box \left[\Box (p \land q) \rightarrow \Box q\right] \lor p$$

- a) $p \vee q$
- b) $p \wedge q$
- c) $p \rightarrow q$
- d) $\square p \vee \square q$
- e) \square $p \wedge \square$ q

10. Dada la proposición:

$$\left[\left(p \vee q \right) {\to} \sim p \right] \wedge \left[\left(p \leftrightarrow q \right) \vee q \right]$$

implica lógicamente a:

- a) *p*
- b) ~ *p*

c) $q \Rightarrow p$

- d) $p \wedge q$
- e) $p \lor (q \to p)$

11. Simplificar: $\sim [\sim (\sim p \land q) \Rightarrow p] \lor q$

- a) ~p ∧ q
- b) $p \Rightarrow q$
- d) ~p ∧ ~q
- e) $\sim p \vee \sim q$

12. Hallar el equivalente de:

raniar et equivalente de:

$$\sim [(q \to p) \land (p \to q)] \lor [(\sim p \land q) \lor (\sim p \land \sim q)]$$

a)
$$p \to q$$
 b) $p \to \sim q$ c) $\sim (p \to q)$ d) $\sim (p \to \sim q)$ e) $\sim q \to p$

13. Simplificar la siguiente proposición:

$$\sim \left[\sim (p \land \sim q) \rightarrow p \right] \lor q$$
a) $p \rightarrow \sim q$ b) $\sim p \rightarrow q$ c) $p \rightarrow q$

- d) $p \vee q$
- e) $p \lor \sim q$

c) $p \rightarrow q$

 $(\sim p \land q) \rightarrow (q \rightarrow p)$ se obtiene:

- a) $p \wedge q$ d) $p \vee q$
- b) $\sim p \wedge q$
- e) $q \rightarrow p$

15. Si:
$$p*q \equiv \sim p \land \sim q$$
 Simplificar:

$$[(\sim q \rightarrow \sim p) \rightarrow (\sim p \rightarrow \sim q)] \land [\sim (p \land q)]$$

- a) p * q
- b) p * p
- c) q * q

- d) ~p * ~q
- e) ~p * q

16. Dado:

p#
$$q = \{[(p \rightarrow q.) \rightarrow p] \lor q\} \land p$$

Simplificar:
 $[(\sim p \land r)\# q]\# (p \leftrightarrow q)$

$$[(\sim p \land r)\#q]\#(p \leftrightarrow q)$$

- a) $(p \lor r) \to r$ b) $\sim p \land r$ c) $\sim p \lor r$ d) $p \land \sim r$ e) $p \lor \sim r$

17. Hallar el equivalente de:

$$\sim [(q \to p) \land (p \to q)] \lor [(\sim p \land q) \lor (\sim p \land \sim q)]$$

- a) $p \to q$ b) $p \to \sim q$ c) $\sim (p \to q)$ d) $\sim (p \to \sim q)$
- e) $\sim q \rightarrow p$

18. "Los estudiantes de MIR son estudiosos y todos los estudiosos ingresan a la universidad".

Luego:

- a) Ningún alumno de MIR ingresa a la universidad.
- b) Todo aquel que ingresa a la universidad es de MIR.
- c) No todo universitario es estudioso.
- d) Todo aquel que sea alumno de MIR ingresa a la universidad.
- e) Todo alumno de MIR no ingresa a la universidad.

19. "Algunos poetas son fantasiosos y todo fantasioso no es realista".

En consecuencia:

- a) Ningún poeta es realista.
- b) Muchos poetas no son realistas.
- c) Muchos poetas no son escritores.
- d) No es cierto que muchos poetas no sean realistas.
- e) Todos los poetas son realistas.

20. La expresión equivalente a:

- "Todas las mujeres no son leales".
- a) Algunas mujeres son leales.
- b) Algunas mujeres no son leales
- c) Todas las mujeres no son leales.
- d) No existe mujer leal.
- e) Todas las mujeres son leales.

21. Partiendo de las siguientes premisas:

- * Todo lo digno humaniza.
- * Algún trabajo es digno.
- Se concluye que:
- a) Todo trabajo humaniza.
- b) No todo trabajo humaniza.
- c) Algún trabajo no humaniza.
- d) Algún trabajo humaniza.
- e) Algún trabajador no es humano.

- * Todos los niños son juguetones.
- * Todo juguetón es travieso.

Entonces:

- a) No todos los niños son traviesos.
- b) Todos los niños son traviesos.
- c) No es cierto que todos los niños son traviesos.

- d) No es cierto que todo travieso es juguetón.
- e) Todos los traviesos son juguetones.

23. Se afirma que:

- * Todos los que habitan en Marte son inteligentes.
- * Algunos que habitan en Marte son caníbales.

Entonces podemos afirmar que:

- a) Algunos que son inteligentes y habitan en Marte son caníbales.
- b) Todos los que habitan en Marte son caníbales.
- c) Algunos caníbales no habitan en Marte.
- d) Todos los inteligentes son caníbales.
- e) Algunos inteligentes son caníbales.

24. Si se afirma:

- * Todas las hormigas tienen cuatro patas.
- * Todos los seres de cuatro patas no tienen antenas.

- a) Todos los seres de cuatro patas son hormigas.
- b) Algunas hormigas tienen antenas.
- c) Todas las hormigas no tienen antenas.
- d) Todas las hormigas tienen antenas.
- e) Ningún ser de cuatro patas es hormiga.

25. Si afirmamos:

"Todas las aves vuelan".

Entonces:

- a) Algunas aves no vuelan
- b) No hay aves que vuelan.
- c) Todos los que vuelan son aves.
- d) Ningún ave no vuela.
- e) Ningún ave vuela.

26. Se afirma:

- * Algunos estudiosos van a fiestas.
- * Todos los que van a fiestas pierden tiempo.

- a) Los que van a fiestas no son estudiosos.
- b) Los que van a fiestas son estudiosos.
- c) Algunos estudiosos pierden tiempo.
- d) Todos los estudiosos aprovechan el tiempo.
- e) No todos los que van a fiestas aprovechan el tiempo.

27. Si:

- * Algunos mamíferos son rumiantes.
- * Todo mamífero es vertebrado.

Entonces:

- a) Algunos rumiantes son invertebrados.
- b) Todo rumiante es vertebrado.
- c) Algunos vertebrados son rumiantes.
- d) Algunos vertebrados son mamíferos.
- e) Algunos rumiantes son mamíferos.

28. Si:

- * Los médicos son profesionales.
- * Algunas personas no son profesionales.

Entonces se deduce:

- a) Toda persona es médico.
- b) Ningún médico es persona.
- c) Es falso que los médicos sean personas.
- d) Ciertas personas no son médicos.
- e) Ningún no persona es no médico.