

MATEMÁTICAS CICLO CERO

LÓGICA PROPOSICIONAL

Mg. Luis Diego Yaipén Gonzales

https://luisdiegoyaipen.wordpress.com/

Logro de la Sesión

Al finalizar la sesión de aprendizaje, el estudiante será capaz de reconocer una proposición lógica, sus conectores y construir una tabla de verdad de proposiciones compuestas concluyendo en valores de verdad de las proposiciones indicadas.

LÓGICA PROPOSICIONAL - PROPOSICIONES

- Es una parte de la lógica matemática, llamada también «lógica de las proposiciones sin analizar».
- Estudia las relaciones entre las proposiciones mediante la conexión lógica de estas.
- Trata de la verdad o falsedad de una o varias proposiciones.

 Es todo enunciado al que se le puede asignar un valor de verdad.

Clases de proposiciones:

- Proposición simple: es aquella que no está relacionada con otras proposiciones.
- Proposición compuesta:
 es aquella que se forma por
 dos o más proposiciones
 unidas por los conectores
 lógicos.

CONECTORES LÓGICOS

Son símbolos que unen dos o más proposiciones simples para formar una proposición compuesta.

Los conectores lógicos son:

Símbolo	Operación Lógica				
~	Negación				
^	Conjunción				
V	· Disyunción				
\rightarrow	Condicional				
\leftrightarrow	Bicondicional				
Δ	Disyunción exclusiva				

CONJUNCIÓN

Si p y q son proposiciones, se llama conjunción de p y q a la proposición compuesta "p y q " y se denota por:

 $p \wedge q$

р	q	p ∧ q
V	V	V
V	F	F
F	V	F
F	F	F

DISYUNCIÓN DÉBIL

Si p y q son proposiciones, se llama disyunción de p y q a la proposición compuesta "p o q" y se denota por:

$$p \vee q$$

р	q	p v q
V	V	V
V	F	V
F	V	V
F	F	F

DISYUNCIÓN FUERTE

CONDICIONAL

Si p y q son proposiciones, se llama disyunción exclusiva de p y q a la proposición compuesta "o p o q" y se denota por:

$$p \triangle q$$

р	q	рΔq
V	V	F
V	F	V
F	V	V
F	F	F

Si p y q son proposiciones, se llama condicional de p y q a la proposición compuesta "si p, entonces q" y se denota por:

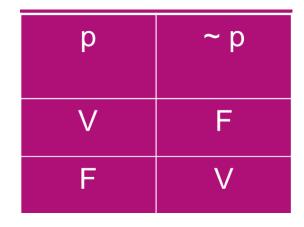
$$p \rightarrow q$$

р	q	$\mathbf{p} \rightarrow \mathbf{q}$
V	V	V
V	F	F
F	V	V
F	F	V

BICONDICIONAL

Si p y q son proposiciones, se llama bicondicional de p y q a la proposición compuesta " p, si y solo sí q" y se

$$p \leftrightarrow q$$


denota por:

р	q	$\mathbf{p}\leftrightarrow\mathbf{q}$
V	V	V
V	F	F
F	V	F
F	F	V

NEGACIÓN

Si p es una proposición, entonces "no p" es la negación de p y se denota por:

~ p

EJEMPLOS

1. Si la proposición $(p \land \sim q) \rightarrow \sim r$ es falsa, determina el valor de verdad de las siguientes proposiciones:

I.
$$\sim p \vee (r \wedge q)$$

II. $(\sim q \leftrightarrow p) \rightarrow \sim q$
III. $(q \triangle \sim r) \wedge (\sim r \leftrightarrow p)$

Solución:

Partimos de:

$$(p \land \sim q) \rightarrow \sim r \equiv F$$

$$V \qquad F$$

$$p \land \sim q \equiv V$$
 $\sim r \equiv F$ $p \equiv V ; q \equiv F$ $r \equiv V$

Luego:

I.
$$F \lor (V \land F) \equiv F \lor F \equiv F$$
II. $(V \leftrightarrow V) \rightarrow V \equiv V \rightarrow V \equiv V$
III. $(F \triangle F) \land (F \leftrightarrow V) \equiv F \land F \equiv F$

Rpta.: FVF

2. Elabora la tabla de verdad de la siguiente proposición compuesta:

 $(\sim p \rightarrow q) \leftrightarrow (\sim q \land p)$ Luego, indica si es una tautología, contradicción o contingencia.

Solución:

2 proposiciones: p y q

р	q	(~p	\rightarrow	q)	\leftrightarrow	(~q	٨	p)
V	V	F	V	V	F	F	F	٧
V	F	F	V	F	V	V	V	٧
F	V	V	V	V	F	F	F	F
F	F	V	F	F	V	V	F	F

Es una contingencia.

Rpta.: Contingencia

Muchas Gracias!